この記事のキーポイント
・伝導における熱抵抗は、導体のシート抵抗を同様に考えることができる。
前回、伝熱には伝導、対流、放射(輻射)の3つの形態があることを説明しました。ここから、各伝熱形態における熱抵抗について説明します。まず、「伝導」における熱抵抗から始めます。
伝導における熱抵抗
熱の伝導とは、物質、分子間の熱の移動です。この伝導における熱抵抗を以下の図と式で示します。
図は、断面積A、長さLのある物質の端の温度T1が伝導により温度T2に至ることをイメージしています。
最初の式は、T1とT2の温度差は、赤の破線で囲んだ項に熱流量Pを掛けた値になることを示しています。
最後の式は赤の破線で囲んだ項が熱抵抗Rthに該当することを示しています。
図および式の各項からすぐに想像できたと思いますが、伝導における熱抵抗は、導体のシート抵抗と基本的に同じ考え方ができます。シート抵抗は赤の破線内の熱伝導率を抵抗率に置き換えた式で求められるのは周知の通りです。抵抗率が導体の材料により固有の値を持つように、熱伝導率も材料固有の値になります。
熱抵抗の式から、物体の断面積が大きくなるか、長さが短くなると伝導の熱抵抗は下がります。
(T1-T2)を求める式は、結果的に熱抵抗Rth×熱流量Pとなり、「熱抵抗とは」で説明した「熱のオームの法則」に則ります。
「電子機器における半導体部品の熱設計」と同一カテゴリの記事一覧
- 熱設計とは
- 技術トレンドの変化と熱設計
- 熱設計の相互理解
- 熱抵抗と放熱の基本:熱抵抗とは
- 熱抵抗と放熱の基本:伝熱と放熱経路
- 熱抵抗と放熱の基本:対流における熱抵抗
- 熱抵抗と放熱の基本:放射における熱抵抗
- 熱抵抗データ:JEDEC規格および熱抵抗測定環境と基板
- 熱抵抗データ:実際のデータ例
- 熱抵抗データ:熱抵抗、熱特性パラメータの定義
- 熱抵抗データ:TJの見積もりにおけるθJAとΨJT -その1-
- 熱抵抗データ:TJの見積もりにおけるθJAとΨJT -その2-
- TJの見積もり:基本計算式
- TJの見積もり:θJAを使った計算例
- TJの見積もり:ΨJTを使った計算例
- TJの見積もり:過渡熱抵抗を使った計算例
- 表面実装における放熱面積の見積もりと注意点
- 表面温度測定:熱電対の種類
- 表面温度測定:熱電対の固定方法
- 表面温度測定:熱電対の取り付け位置
- 表面温度測定:熱電対の先端の処理
- 表面温度測定:熱電対の影響