DC-DCコンバータ|応用編
フローティング動作のリニアレギュレータを使った電源設計のポイント
2022.09.13
リニアレギュレータは、LDO:Low Dropout(regulator)や3端子レギュレータなどとも呼ばれ、様々なアプリケーションに使われています。スイッチング電源の普及は著しいものがありますが、リニアレギュレータは設計が簡単で安価であり、条件によっては効率も悪くなく特別な放熱器を必要とせず、シンプルで小型のソリューションになり得ます。
リニアレギュレータは、回路構成などによっていくつかに分類できます。ここでは、フローティング動作のリニアレギュレータを使って電源を設計する際の、部品定数の決め方や考え方、リニアレギュレータICが備えている保護機能、効率と熱設計などのポイントを解説して行きます。また、フローティング動作ではなくグラウンド(GND)があるタイプについても、別途記事掲載を予定しています。
以下の項目について解説をしていきます。
DC-DCコンバータ
基礎編
- 電源回路の代表的な7方式: 低雑音型から昇圧型まで!
- 昇圧型DC-DCコンバータのシャットダウン時の動作
- 昇圧電源の出力でのスイッチングノイズの低減 -はじめに-
- 昇圧型DC-DCコンバータの出力リップル電圧 -はじめに-
- 昇圧電源の負荷短絡によるトラブルと保護回路 -はじめに-
- 昇圧型DC-DCコンバータの最大出力電流 -はじめに-
- リニアレギュレータの基礎
- スイッチングレギュレータの基礎
- DC-DCの基礎 ーまとめー
- DC/DCコンバータとは?
設計編
評価編
-
損失の検討
- 同期整流降圧コンバータの制御IC消費電力損失
- 同期整流降圧コンバータのデッドタイム損失
- 同期整流降圧コンバータのゲートチャージ損失
- インダクタのDCRによる導通損失
- 電源ICの電力損失計算例
- 定義と発熱
- 同期整流降圧コンバータの損失
- 同期整流降圧コンバータの導通損失
- 同期整流降圧コンバータのスイッチング損失
- 損失の簡易的計算方法
- パッケージ選定時の熱計算例 1
- パッケージ選定時の熱計算例 2
- 損失要因
- スイッチング周波数を高めて小型化を検討するときの注意
- 高入力電圧アプリケーションを検討するときの注意
- 出力電流が大きいアプリケーションを検討するときの注意 その1
- 出力電流が大きいアプリケーションを検討するときの注意 その2
- 損失の検討 ーまとめー
- スイッチングレギュレータの特性と評価方法の概要
- 電源ICのデータシートの読み方:表紙、ブロック図、絶対最大定格と推奨動作条件
- スイッチングレギュレータの評価:出力電圧
応用編
- リニアレギュレータを使った電源設計のポイント
- LDOリニアレギュレータの並列接続とは
- リニアレギュレータの簡易的な安定性最適化方法
- 汎用電源ICで電源シーケンスを実現する回路
- リニアレギュレータを使った電源が起動しないトラブル事例1:手はんだによるICおよび周辺部品の破損
- フローティング動作のリニアレギュレータを使った電源設計のポイント
製品紹介
FAQ